Measurement: Calculating and Estimating Volume

Aim:

I can calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres and cubic metres, and extending to other units.

I can estimate and calculate the volume of cubes and cuboids.

Success Criteria: I can count cubes in a layer to help me estimate the volume of cubes and cuboids. I can use a formula to calculate volume of cubes and cuboids.	Resources: Lesson Pack Isometric paper
Small cubes (interlocking if possible)	
Dice	

Prior Learning: It will be helpful if children have used small cubes to calculate volume.

Learning Sequence

Make the Shape: In pairs, children roll a dice three times. They multiply the three numbers together. When
they have created a number, they take this number of small cubes and create a 3D shape. They try to make a
cube or cuboid.

(n)	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding. Children complete fluency problems which involve finding the volume of 3D shapes by counting cubes. Children explore answering reasoning problems which involve finding the volume of 3D shapes and explaining reasoning to prove if the given statements are true or false. Children use problem-solving skills in order to calculate answers to tasks that involve a greater depth of thinking and investigate finding all possible answers.	
	Draw That Shape: Children use isometric paper to draw a cube or cuboid which would have the volume $60 \mathrm{~cm}^{3}$.	\bigcirc
Exploreit Estimateit: Boxit:	ildren use small cubes to build a cube or cuboid. Partners estimate the volume (without counting). Children coun firm the actual volume. ovide children with a range of empty boxes for them to estimate the volume. They then measure the length, wid d calculate the actual volume.	cubes to and height

Measurement

Calculating and

 Estimating Volume

Aim

- I can estimate and calculate the volume of cubes and cuboids.

Success Criteria

- I can count cubes in a layer to help me estimate the volume of cubes and cuboids.
- I can use a formula to calculate volume of cubes and cuboids.

Make the Shape

Roll a dice 3 times. Multiply the numbers you roll. Make a 3D shape with this number of small cubes.

Were you able to make a cube or a cuboid?

What Is Volume?

With your partner, write a definition for volume.

Volume = the amount of 3D space taken up by something.

When measuring the volume of a fixed object (where the shape doesn't change), we use cubic units. Today we are going to use cubic centimetres and cubic metres to measure and estimate the volume of cubes and cuboids.

What Is Volume?

We can find the volume of these shapes made from $1 \mathrm{~cm}^{3}$ multilink cubes by counting the number of $1 \mathrm{~cm}^{3}$ cubes that make up each shape.

Remember that some shapes have cubes that are hidden from sight!

$10 \mathrm{~cm}^{3}$
$13 \mathrm{~cm}^{3}$
$15 \mathrm{~cm}^{3}$

Calculating Volume of Cubes and Cuboids

We can calculate the volume of cubes and cuboids by counting cubes in layers:

Calculating Volume of Cubes and Cuboids

Count the top layer of each shape and calculate the volume. The unit measurement is shown underneath.

$36 \mathrm{~cm}^{3}$

cubic metres
$48 \mathrm{~m}^{3}$

cubic centimetres
$32 \mathrm{~cm}^{3}$

Calculating Volume of Cubes and Cuboids

Dn unu bnnus anothor isıau th ralrulato the vonlumo of ruhos length \times width \times height

Use the formula to calculate the volume of the following shapes.

$54 \mathrm{~cm}^{3}$

$192 \mathrm{~m}^{3}$

$240 \mathrm{~cm}^{3}$

Calculating Volume of Cubes and Cuboids

On these shapes, one cube has been drawn.
Each cube is a cubic centimetre. Estimate the volume.

$12 \mathrm{~cm}^{3}$

$27 \mathrm{~cm}^{3}$

$18 \mathrm{~cm}^{3}$

Calculating and Estimating Volume

Use your fabulous calculation and estimation skills to complete these activity sheets.

Diving into Mastery

Dive in by completing your own activity!

Draw That Shape!

Lewis has estimated that a shape has a volume of $60 \mathrm{~cm}^{3}$. On your isometric paper, draw a cube or cuboid which would have a volume of $60 \mathrm{~cm}^{3}$.

There are many possible solutions.

Aim

- I can estimate and calculate the volume of cubes and cuboids.

Success Criteria

- I can count cubes in a layer to help me estimate the volume of cubes and cuboids.
- I can use a formula to calculate volume of cubes and cuboids.

Regent Studies | www.regentstudies.com

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

*
 Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.
00

1. Calculate the volume of these shapes.

a) Each small cube is a cubic centimetre.	b) Each small cube is a cubic metre. $\text { volume }=$ m^{3}
c)	d) volume $=$ m^{3}
e) volume $=$ cm^{3}	f) volume $=$ m^{3}

2. Estimate the volume of these shapes.

3. The volume of a cuboid is $36 \mathrm{~cm}^{3}$. The height of the cuboid is 6 cm and the width is 2 cm . What is the measurement of the other side?
4. A cuboid has a volume of $60 \mathrm{~cm}^{3}$. Place a tick by all the dimensions which the cuboid could be.

$12 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}$	$10 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$
$20 \mathrm{~cm} \times 3 \mathrm{~cm} \times 1 \mathrm{~cm}$	$5 \mathrm{~cm} \times 6 \mathrm{~cm} \times 2 \mathrm{~cm}$
$6 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$	$8 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$

Calculating and Estimating Volume Answers

1. Calculate the volume of these shapes.
a. $20 \mathrm{~cm}^{3}$
b. $36 \mathrm{~m}^{3}$
c. $84 \mathrm{~cm}^{3}$
d. $192 m^{3}$
e. $32 \mathrm{~cm}^{3}$
f. $800 \mathrm{~m}^{3}$
2. Estimate the volume of these shapes.
a. $16 \mathrm{~cm}^{3}$
b. $27 m^{3}$
c. $14 \mathrm{~cm}^{3}$
d. $24 m^{3}$
3. The volume of a cuboid is $36 \mathrm{~cm}^{3}$. The height of the cuboid is 6 cm and the width is 2 cm . What is the measurement of the other side?

3 cm

4. A cuboid has a volume of $60 \mathrm{~cm}^{3}$. Place a tick by all the dimensions which the cuboid could be.

$12 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}$	$\boxed{ }$	$\boxed{10 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}}$	\boxed{V}
$20 \mathrm{~cm} \times 3 \mathrm{~cm} \times 1 \mathrm{~cm}$	\boxed{V}	$\boxed{\mathrm{~cm} \times 6 \mathrm{~cm} \times 2 \mathrm{~cm}}$	\boxed{V}
$6 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$	\square	$8 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$	\square

I can estimate and calculate the volume of cubes and cuboids.

1. Calculate the volume of these shapes.

2. Calculate the area of this composite shape.

3. Estimate the volume of these shapes.

4. The volume of a cuboid is $72 \mathrm{~cm}^{3}$. The area of the base is $9 \mathrm{~cm}^{2}$. What is the height of the shape?

Calculating and Estimating Volume Answers

1. Calculate the volume of these shapes.
a. $36 \mathrm{~cm}^{3}$
b. $48 \mathrm{~m}^{3}$
c. $126 \mathrm{~cm}^{3}$
d. $1008 \mathrm{~m}^{3}$
e. $288 \mathrm{~cm}^{3}$
f. $960 \mathrm{~m}^{3}$
2. Calculate the area of this composite shape.
$224 \mathrm{~cm}^{3}$
3. Estimate the volume of these shapes.
a. $20 \mathrm{~cm}^{3}$
b. $60 \mathrm{~m}^{3}$
c. $36 \mathrm{~m}^{3}$
d. $64 m^{3}$
4. The volume of a cuboid is $72 \mathrm{~cm}^{3}$. The area of the base is $9 \mathrm{~cm}^{2}$. What is the height of the shape?
8 cm

著
 Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.
000

1. Calculate the volume of these shapes.

a) Each small cube is a cubic centimetre. volume $=$	b) Each small cube is a cubic metre. volume $=$
c) volume $=$	d) volume $=$
e) volume $=$	f) volume $=$

2. Calculate the area of this composite shape. The shape is made up of a cube and a cuboid.

3. Estimate the volume of these shapes.

4. Find all the cuboids that have a volume of $96 \mathrm{~cm}^{3}$, where one of the dimensions is 8 cm .

Calculating and Estimating Volume Answers

1. Calculate the volume of these shapes.
a. $60 \mathrm{~cm}^{3}$
b. $64 m^{3}$
c. $180 \mathrm{~cm}^{3}$
d. $1800 \mathrm{~m}^{3}$
e. $132 \mathrm{~cm}^{3}$
f. $324 m^{3}$
2. Calculate the area of this composite shape.
$99 \mathrm{~cm}^{3}$
3. Estimate the volume of these shapes.
a. $72 \mathrm{~cm}^{3}$
b. $125 \mathrm{~m}^{3}$
c. $48 m^{3}$
d. $150 \mathrm{~m}^{3}$
4. Find all the cuboids that have a volume of $96 \mathrm{~cm}^{3}$, where one of the dimensions is 8 cm . $8 \mathrm{~cm} \times 12 \mathrm{~cm} \times 1 \mathrm{~cm}$
$8 \mathrm{~cm} \times 6 \mathrm{~cm} \times 2 \mathrm{~cm}$
$8 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}$
1) a) $11 \mathrm{~cm}^{3}$
b) $30 \mathrm{~cm}^{3}$
c) $14 \mathrm{~cm}^{3}$
d) $44 \mathrm{~cm}^{3}$

Order from greatest to smallest is d, b, c, a
2) The greatest amount is Im^{3}.

The smallest amount is $1 \mathrm{~mm}^{3}$.

We can use what we know about the relative size of millimetres, centimetres and metres to help us see that $\mathrm{Im}^{3}=1 \mathrm{Im} \times 1 \mathrm{Im} \times \mathrm{Im}$ will be larger than $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$. This means that $1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm}$ is the smallest volume.
3) a) $27 \mathrm{~cm}^{3}-7 \mathrm{~cm}^{3}=20 \mathrm{~cm}^{3}$

20 more cubes will need to be added.
b) $27 \mathrm{~cm}^{3}-10 \mathrm{~cm}^{3}=17 \mathrm{~cm}^{3}$

17 more cubes will need to be added.

1) Keeva is incorrect. The model could have a volume of $16 \mathrm{~cm}^{3}$ or $12 \mathrm{~cm}^{3}$.

2) Emily's cuboid has a volume of $48 \mathrm{~cm}^{3}$.

The first shape has a volume of $25 \mathrm{~cm}^{3}$.
The second shape has a volume of $21 \mathrm{~cm}^{3}$.
The total volume of both shapes is $46 \mathrm{~cm}^{3}$ not $48 \mathrm{~cm}^{3}$ so shen is incorrect.

1) a) $27 \mathrm{~cm}^{3}-1 \mathrm{~cm}^{3}=26 \mathrm{~cm}^{3}$
b) $125 \mathrm{~cm}^{3}-27 \mathrm{~cm}^{3}=98 \mathrm{~cm}^{3}$
2) a) $2 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ cuboid $=32 \mathrm{~cm}^{3}$
$2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$ cuboid $=12 \mathrm{~cm}^{3}$
b) After the two example cuboids are taken into account there are another 8 more different cuboids that can be made:
$3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}$ cuboid $=27 \mathrm{~cm}^{3}$
$4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ cuboid $=64 \mathrm{~cm}^{3}$
$2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ cuboid $=8 \mathrm{~cm}^{3}$
$3 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ cuboid $=48 \mathrm{~cm}^{3}$
$3 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}$ cuboid $=36 \mathrm{~cm}^{3}$
$2 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}$ cuboid $=16 \mathrm{~cm}^{3}$
$2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}$ cuboid $=18 \mathrm{~cm}^{3}$
$2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}$ cuboid $=24 \mathrm{~cm}^{3}$
3) Find the volume of each shape. Then, order them from the greatest volume to the smallest volume.

cm^{3}
4) Which of these amounts shows the greatest volume? Which is the smallest volume? How do you know?

5) How many more $1 \mathrm{~cm}^{3}$ interlocking cubes will need to to be added to each model to make a complete cube with sides of 3 cm ?
a)

b)

\qquad
\qquad
\qquad
6) Joshua draws two different views of the model his friend has made out of $1 \mathrm{~cm}^{3}$ interlocking cubes. Keeva looks at Joshua's drawing.

7) Shen thinks that both of these shapes put together will have the same volume as Emily's cuboid.

Is Shen correct? Prove it!
\qquad
\qquad
\qquad
\qquad

1) a) This cube is made from $1 \mathrm{~cm}^{3}$ interlocking cubes.

Imagine that the cube has been made with a hollow centre so that only the faces are made from the interlocking cubes.

What is the volume of the cube?

\qquad
\qquad
\qquad
b) If another similar hollow cube was made that had the dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, what would the volume of the cube be?
\square
2) I use $1 \mathrm{~cm}^{3}$ interlocking cubes to make some different size cuboids. I make cuboids with different side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm .
Here are two of my cuboids:
a) What are the volumes of each cuboid?

b) How many more cuboids can I make which have side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm ? What is the volume of each different cuboid?

1) Find the volume of each shape. Then, order them from the greatest volume to the smallest volume.
$=1 \mathrm{~cm}^{3}$

2) Which of these amounts shows the greatest volume? Which is the smallest volume? How do you know?

3) How many more $1 \mathrm{~cm}^{3}$ interlocking cubes will need to to be added to each model to make a complete cube with sides of 3 cm ?

b)

4) Find the volume of each shape. Then, order them from the greatest volume to the smallest volume.

5) Which of these amounts shows the greatest volume? Which is the smallest volume? How do you know?

\square
6) How many more $1 \mathrm{~cm}^{3}$ interlocking cubes will need to to be added to each model to make a complete cube with sides of 3 cm ?
a)

b)

7) Joshua draws two different views of the model his friend has made out of $1 \mathrm{~cm}^{3}$ interlocking cubes.
Keeva looks at Joshua's drawing.

8) Shen thinks that both of these shapes put together will have the same volume as Emily's cuboid.

Is Shen correct? Prove it!

1) Joshua draws two different views of the model his friend has made out of $1 \mathrm{~cm}^{3}$ interlocking cubes.
Keeva looks at Joshua's drawing.

2) Shen thinks that both of these shapes put together will have the same volume as Emily's cuboid.

Is Shen correct? Prove it!

1) a) This cube is made from $1 \mathrm{~cm}^{3}$ interlocking cubes.
Imagine that the cube has been
 made with a hollow centre so that only the faces are made from the interlocking cubes.

What is the volume of the cube?

b) If another similar hollow cube was made that had the dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, what would the volume of the cube be?
2) I use $1 \mathrm{~cm}^{3}$ interlocking cubes to make some different size cuboids. I make cuboids with different side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm . Here are two of my cuboids:

a) What are the volumes of each cuboid?
b) How many more cuboids can I make which have side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm ?

What is the volume of each different cuboid?

1) a) This cube is made from $1 \mathrm{~cm}^{3}$ interlocking cubes.

Imagine that the cube has been made with a hollow centre so that only the faces are made from the interlocking cubes.
What is the volume of the cube?

b) If another similar hollow cube was made that had the dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, what would the volume of the cube be?
2) I use $1 \mathrm{~cm}^{3}$ interlocking cubes to make some different size cuboids. I make cuboids with different side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm . Here are two of my cuboids:

a) What are the volumes of each cuboid?
b) How many more cuboids can I make which have side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm ?

What is the volume of each different cuboid?

Fill That Box

I can estimate and calculate the volume of cubes and cuboids.

A box is 1.5 m long, 0.6 m wide and 0.6 m high.
Toy cars are in small boxes which are 15 cm long, 10 cm wide and 10 cm high.
What is the largest number of cars that can be put into the larger box?
Show how you worked out the answer. You may want to draw pictures to help.

Fill that Box Answer

360 cars would fit into the larger box.

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.		
I can count in a layer to help me estimate the volume of cubes and cuboids.		
I can use a formula to calculate the volume of cubes and cuboids.		

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.		
I can count in a layer to help me estimate the volume of cubes and cuboids.		
I can use a formula to calculate the volume of cubes and cuboids.		

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.		
I can count in a layer to help me estimate the volume of cubes and cuboids.		
I can use a formula to calculate the volume of cubes and cuboids.		

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.

I can count in a layer to help me estimate the volume of cubes and cuboids.

I can use a formula to calculate the volume of cubes and cuboids.

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.		
I can count in a layer to help me estimate the volume of cubes and cuboids.		
I can use a formula to calculate the volume of cubes and cuboids.		

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.

I can count in a layer to help me estimate the volume of cubes and cuboids.

I can use a formula to calculate the volume of cubes and cuboids.

Measurement | Calculating and Estimating Volume

I can estimate and calculate the volume of cubes and cuboids.

I can count in a layer to help me estimate the volume of cubes and cuboids.

I can use a formula to calculate the volume of cubes and cuboids.

